Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pulm Circ ; 14(1): e12336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312832

RESUMO

Whether all Schistosoma species cause pulmonary hypertension (PH) is unclear. Experimentally exposing mice to Schistosoma haematobium eggs caused PH, which was less severe than that induced by S. mansoni exposure. These findings align with the relatively uncommon reports of pulmonary arterial hypertension associated with S. haematobium.

2.
Clin Sci (Lond) ; 137(8): 617-631, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014925

RESUMO

BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Esquistossomose , Humanos , Animais , Camundongos , Hipertensão Pulmonar/etiologia , Fibrose Pulmonar/complicações , Schistosoma mansoni , Pulmão/patologia , Esquistossomose/complicações , Esquistossomose/patologia , Fibrose
3.
Pulm Circ ; 12(3): e12105, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35874852

RESUMO

Right ventricular (RV) failure is the primary cause of death in pulmonary hypertension (PH), but the mechanisms of RV failure are not well understood. We hypothesized macrophages in the RV contribute to the RV response in PH. We induced PH in mice with hypoxia (FiO2 10%) and Schistosoma mansoni exposure, and in rats with SU5416-hypoxia. We quantified cardiac macrophages in mice using flow cytometry. Parabiosis between congenic CD45.1/.2 mice or Cx3cr1-green fluorescent protein and wild-type mice was used to quantify circulation-derived macrophages in experimental PH conditions. We administered clodronate liposomes to Sugen hypoxia (SU-Hx) exposed rats to deplete macrophages and evaluated the effect on the extracellular matrix (ECM) and capillary network in the RV. In hypoxia exposed mice, the overall number of macrophages did not significantly change but two macrophage subpopulations increased. Parabiosis identified populations of RV macrophages that at steady state is derived from the circulation, with one subpopulation that significantly increased with PH stimuli. Clodronate treatment of SU-Hx rats resulted in a change in the RV ECM, without altering the RV vasculature, and correlated with improved RV function. Populations of RV macrophages increase and contribute to RV remodeling in PH, including through regulation of the RV ECM.

4.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763400

RESUMO

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Artéria Pulmonar/metabolismo , Ratos , Escleroderma Sistêmico/patologia , Remodelação Vascular
5.
Pulm Circ ; 12(2): e12072, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35514775

RESUMO

Schistosomiasis is a major cause of pulmonary arterial hypertension (PAH) worldwide, but the prevalence and risk factors for schistosomiasis-associated PAH (SchPAH) development are not well understood. Schistosomiasis-associated hepatosplenic disease (SchHSD) is thought to be a major risk factor for PAH development. Herein, we describe our plans for prospectively screening SchHSD subjects for clinical evidence of PAH at two major academic medical centers and national referral hospitals in Addis Ababa, Ethiopia and Lusaka, Zambia. The screening study will primarily be conducted by echocardiography, in addition to clinical assessments. Plasma samples will be drawn and banked for subsequent analysis based on preclinical animal model rationale. If successful, this study will demonstrate feasibility of conducting prospective cohort studies of SchPAH screening in schistosomiasis-endemic regions of Africa, and provide initial data on clinic-based disease prevalence and potential mechanistic biomarkers underlying disease pathogenesis.

6.
PLoS Negl Trop Dis ; 16(4): e0010343, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417453

RESUMO

BACKGROUND: Schistosomiasis, a major cause of pulmonary arterial hypertension (PAH) worldwide, is most clearly described complicating infection by one species, Schistosoma mansoni. Controlled exposure of mice can be used to induce Type 2 inflammation-dependent S. mansoni pulmonary hypertension (PH). We sought to determine if another common species, S. japonicum, can also cause experimental PH. METHODS: Schistosome eggs were obtained from infected mice, and administered by intraperitoneal sensitization followed by intravenous challenge to experimental mice, which underwent right heart catheterization and tissue analysis. RESULTS: S. japonicum sensitized and challenged mice developed PH, which was milder than that following S. mansoni sensitization and challenge. The degree of pulmonary vascular remodeling and Type 2 inflammation in the lungs was similarly proportionate. Cross-sensitization revealed that antigens from either species are sufficient to sensitize for intravenous challenge with either egg, and the degree of PH severity depended on primarily the species used for intravenous challenge. Compared to a relatively uniform distribution of S. mansoni eggs, S. japonicum eggs were observed in clusters in the lungs. CONCLUSIONS: S. japonicum can induce experimental PH, which is milder than that resulting from comparable S. mansoni exposure. This difference may result from the distribution of eggs in the lungs, and is independent of which species is used for sensitization. This result is consistent with the clearer association between S. mansoni infection and the development of schistosomiasis-associated PAH in humans.


Assuntos
Hipertensão Pulmonar , Schistosoma japonicum , Esquistossomose , Animais , Hipertensão Pulmonar/etiologia , Inflamação/complicações , Camundongos , Schistosoma mansoni , Esquistossomose/complicações
7.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L675-L685, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346780

RESUMO

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-2/metabolismo , Anaerobiose/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia
8.
Cell Mol Immunol ; 18(2): 374-384, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420357

RESUMO

Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH. Moreover, we found elevated levels of IL-6 in the blood and lungs of patients and mice with PH. We observed that transgenic mice overexpressing Il-6 in the lungs displayed elevated neutrophil egress from the bone marrow and exaggerated neutrophil recruitment to the lungs, resulting in exacerbated pulmonary vascular remodeling, and dysfunctional hemodynamics. Mechanistically, we found that IL-6-induced neutrophil egress from the bone marrow was dependent on interferon regulatory factor 4 (IRF-4)-mediated CX3CR1 expression in neutrophils. Consequently, Cx3cr1 genetic deficiency in hematopoietic cells in Il-6-transgenic mice significantly reduced neutrophil egress from bone marrow and decreased neutrophil counts in the lungs, thus ameliorating pulmonary remodeling and hemodynamics. In summary, these findings define a novel mechanism of IL-6-induced neutrophil egress from the bone marrow and reveal a new therapeutic target to curtail neutrophil-mediated inflammation in pulmonary vascular disease.


Assuntos
Células da Medula Óssea/patologia , Hipertensão Pulmonar/patologia , Inflamação/complicações , Interleucina-6/metabolismo , Pulmão/patologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Feminino , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/genética , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
9.
Front Immunol ; 11: 608883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362796

RESUMO

Pulmonary arterial hypertension (PAH) is a disease of the lung blood vessels that results in right heart failure. PAH is thought to occur in about 5% to 10% of patients with hepatosplenic schistosomiasis, particularly due to S. mansoni. The lung blood vessel injury may result from a combination of embolization of eggs through portocaval shunts into the lungs causing localized Type 2 inflammatory response and vessel remodeling, triggering of autonomous pathology that becomes independent of the antigen, and high cardiac output as seen in portopulmonary hypertension. The condition is likely underdiagnosed as there is little systematic screening, and risk factors for developing PAH are not known. Screening is done by echocardiography, and formal diagnosis requires invasive right heart catheterization. Patients with Schistosoma-associated PAH show reduced functional capacity and can be treated with pulmonary vasodilators, which improves symptoms and may improve survival. There are animal models of this disease that might help in understanding disease pathogenesis and identify novel targets to screen and treatment. Pathogenic mechanisms include Type 2 immunity and activation and signaling in the TGF-ß pathway. There are still major uncertainties regarding Schistosoma-associated PAH development, course and treatment.


Assuntos
Hipertensão Arterial Pulmonar/patologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/patologia , Animais , Humanos , Pulmão/imunologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/imunologia , Esquistossomose mansoni/imunologia , Fator de Crescimento Transformador beta/imunologia , Remodelação Vascular/imunologia , Remodelação Vascular/fisiologia
10.
ERJ Open Res ; 6(4)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33313306

RESUMO

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) gains entry into the lung epithelial cells by binding to the surface protein angiotensin-converting enzyme 2. Severe SARS-CoV-2 infection, also known as coronavirus disease 2019 (COVID-19), can lead to death due to acute respiratory distress syndrome mediated by inflammatory immune cells and cytokines. In this review, we discuss the molecular and biochemical bases of the interaction between SARS-CoV-2 and human cells, and in doing so we highlight knowledge gaps currently precluding development of new effective therapies. In particular, discovery of novel treatment targets in COVID-19 will start from understanding pathologic changes based on a large number of autopsy lung tissue samples. Pathogenetic roles of potential molecular targets identified in human lung tissues must be validated in established animal models. Overall, this stepwise approach will enable appropriate selection of candidate therapeutic modalities targeting SARS-CoV2 and the host inflammatory response.

12.
Sci Rep ; 10(1): 413, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31942023

RESUMO

Altered metabolism in pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) contributes to the pathology of pulmonary hypertension (PH), but changes in substrate uptake and how substrates are utilized have not been fully characterized. We hypothesized stable isotope metabolomics would identify increased glucose, glutamine and fatty acid uptake and utilization in human PASMCs and PAECs from PH versus control specimens, and that TGF-ß treatment would phenocopy these metabolic changes. We used 13C-labeled glucose, glutamine or a long-chain fatty acid mixture added to cell culture media, and mass spectrometry-based metabolomics to detect and quantify 13C-labeled metabolites. We found PH PASMCs had increased glucose uptake and utilization by glycolysis and the pentose shunt, but no changes in glutamine or fatty acid uptake or utilization. Diseased PAECs had increased proximate glycolysis pathway intermediates, less pentose shunt flux, increased anaplerosis from glutamine, and decreased fatty acid ß-oxidation. TGF-ß treatment increased glycolysis in PASMCs, but did not recapitulate the PAEC disease phenotype. In TGF-ß-treated PASMCs, glucose, glutamine and fatty acids all contributed carbons to the TCA cycle. In conclusion, PASMCs and PAECs collected from PH subjects have significant changes in metabolite uptake and utilization, partially recapitulated by TGF-ß treatment.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Marcação por Isótopo/métodos , Metaboloma/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adolescente , Adulto , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Ciclo do Ácido Cítrico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Glicólise , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Via de Pentose Fosfato , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Transdução de Sinais
13.
Cardiovasc Res ; 116(12): 2021-2030, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710666

RESUMO

AIMS: Transforming growth factor-ß (TGF-ß) signalling is required for chronic hypoxia-induced pulmonary hypertension (PH). The activation of TGF-ß by thrombospondin-1 (TSP-1) contributes to the pathogenesis of hypoxia-induced PH. However, neither the cellular source of pathologic TSP-1 nor the downstream signalling pathway that link activated TGF-ß to PH have been determined. In this study, we hypothesized that circulating monocytes, which are recruited to become interstitial macrophages (IMs), are the major source of TSP-1 in hypoxia-exposed mice, and TSP-1 activates TGF-ß with increased Rho-kinase signalling, causing vasoconstriction. METHODS AND RESULTS: Flow cytometry revealed that a specific subset of IMs is the major source of pathologic TSP-1 in hypoxia. Intravenous depletion and parabiosis experiments demonstrated that these cells are circulating prior to recruitment into the interstitium. Rho-kinase-mediated vasoconstriction was a major downstream target of active TGF-ß. Thbs1 deficient bone marrow (BM) protected against hypoxic-PH by blocking TGF-ß activation and Rho-kinase-mediated vasoconstriction. CONCLUSION: In hypoxia-challenged mice, BM derived and circulating monocytes are recruited to become IMs which express TSP-1, resulting in TGF-ß activation and Rho-kinase-mediated vasoconstriction.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Macrófagos/metabolismo , Trombospondina 1/metabolismo , Vasoconstrição , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pressão Sanguínea , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parabiose , Transdução de Sinais , Trombospondina 1/genética , Fator de Crescimento Transformador beta1/metabolismo , Quinases Associadas a rho/metabolismo
15.
J Am Heart Assoc ; 8(15): e013111, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31339057

RESUMO

Background Inflammation underlies many forms of pulmonary hypertension (PH), including that resulting from Schistosoma infection, a major cause of PH worldwide. Schistosomiasis-associated PH is proximately triggered by embolization of parasite eggs into the lungs, resulting in localized type 2 inflammation. However, the role of CD4+ T cells in this disease is not well defined. Methods and Results We used a mouse model of schistosomiasis-associated PH, induced by intraperitoneal egg sensitization followed by intravenous egg challenge, with outcomes including right ventricle systolic pressure measured by cardiac catheterization, and cell density and phenotype assessed by flow cytometry. We identified that embolization of Schistosoma eggs into lungs of egg-sensitized mice increased the perivascular density of T-helper 2 (Th2) CD4+ T cells by recruitment of cells from the circulation and triggered type 2 inflammation. Parabiosis confirmed that egg embolization is required for localized type 2 immunity. We found Th2 CD4+ T cells were necessary for Schistosoma-induced PH, given that deletion of CD4+ T cells or inhibiting their Th2 function protected against type 2 inflammation and PH following Schistosoma exposure. We also observed that adoptive transfer of Schistosoma-sensitized CD4+ Th2 cells was sufficient to drive type 2 inflammation and PH. Conclusions Th2 CD4+ T cells are a necessary and sufficient component for the type 2 inflammation-induced PH following Schistosoma exposure.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/parasitologia , Pneumonia/imunologia , Pneumonia/parasitologia , Esquistossomose/complicações , Esquistossomose/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
16.
Pulm Circ ; 9(1): 2045894018820813, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30511588

RESUMO

Schistosomiasis is a leading cause of pulmonary hypertension (PH) worldwide. Recent studies reveal that the type-2 immune cytokines IL-4 and IL-13, as well as consequent activation of TGF-ß, are key factors in the pathogenesis of Schistosoma-PH. Paclitaxel has been reported to act as an adjuvant for Th2 inflammation while downregulating TGF-ß activation. Moreover, paclitaxel blocks PH in monocrotaline and SU5416-hypoxia models. We hypothesized that paclitaxel would augment Th2 inflammation while blocking TGF-ß activation and PH after schistosomiasis exposure. Wild-type mice (C57BL6/J; 6/group) were intraperitoneally (IP) sensitized and then intravenously (IV) challenged with Schistosoma mansoni eggs. One day after IV egg challenge, the mice were treated with a single IP dose of 25 mg/kg paclitaxel or vehicle. Right ventricular (RV) catheterization was performed and granuloma volumes and vascular remodeling were quantified. Lung cytokines were quantified by ELISA and reverse transcription polymerase chain reaction, and the quantity of active TGF-ß was determined using a cell reporter line. We also investigated hypoxia-induced PH. Paclitaxel treatment significantly protected mice from Schistosoma-PH, with decreased RV systolic pressure ( P = 0.005) and pulmonary vascular media thickness. Inflammation was significantly suppressed, contrary to our hypothesis, with decreased IL-4 and IL-13 levels, smaller granulomas, and less active TGF-ß following paclitaxel treatment. There was no change in IFN-γ or FoxO1 or FoxO3 expression. Paclitaxel did not suppress chronic hypoxia-induced PH, which is also TGF-ß-driven but independent of type-2 immunity. Paclitaxel protects against Schistosoma-induced PH in mice, although by blocking proximate Th2 inflammation rather than suppressing distal TGF-ß activation.

17.
Am J Respir Cell Mol Biol ; 59(4): 479-489, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851508

RESUMO

Optimal right ventricular (RV) function in pulmonary hypertension (PH) requires structural and functional coupling between the RV cardiomyocyte and its adjacent capillary network. Prior investigations have indicated that RV vascular rarefaction occurs in PH, which could contribute to RV failure by reduced delivery of oxygen or other metabolic substrates. However, it has not been determined if rarefaction results from relative underproliferation in the setting of tissue hypertrophy or from actual loss of vessels. It is also unknown if rarefaction results in inadequate substrate delivery to the RV tissue. In the present study, PH was induced in rats by SU5416-hypoxia-normoxia exposure. The vasculature in the RV free wall was assessed using stereology. Steady-state metabolomics of the RV tissue was performed by mass spectrometry. Complementary studies were performed in hypoxia-exposed mice and rats. Rats with severe PH had evidence of RV failure by decreased cardiac output and systemic hypotension. By stereology, there was significant RV hypertrophy and increased total vascular length in the RV free wall in close proportion, with evidence of vessel proliferation but no evidence of endothelial cell apoptosis. There was a modest increase in the radius of tissue served per vessel, with decreased arterial delivery of metabolic substrates. Metabolomics revealed major metabolic alterations and metabolic reprogramming; however, metabolic substrate delivery was functionally preserved, without evidence of either tissue hypoxia or depletion of key metabolic substrates. Hypoxia-treated rats and mice had similar but milder alterations. There is significant homeostatic vascular adaptation in the right ventricle of rodents with PH.


Assuntos
Adaptação Fisiológica , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Animais , Apoptose , Proliferação de Células , Células Endoteliais/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Indóis , Camundongos Endogâmicos C57BL , Pirróis , Ratos Sprague-Dawley
18.
Nat Commun ; 8: 15494, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555642

RESUMO

Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-ß signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-ß blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-ß is regulated at the level of activation, but how TGF-ß is activated in this disease is unknown. Here we show TGF-ß activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-ß activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-ß could thus be a therapeutic approach in TGF-ß-dependent vascular diseases.


Assuntos
Células da Medula Óssea/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/parasitologia , Hipóxia/complicações , Schistosoma/fisiologia , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bovinos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/imunologia , Hipóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Th2/imunologia , Trombospondina 1/sangue , Trombospondina 1/genética
19.
Blood Adv ; 1(9): 526-534, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296972

RESUMO

Accumulating evidence shows a causative role for the bone marrow (BM) in the genesis and progression of pulmonary hypertension (PH). Engraftment of BM hematopoietic stem cells from PH patients to mice reproduces the cardiopulmonary pathology of PH. However, it is unknown whether healthy BM can prevent the development of right heart disease. Caveolin-1-deficient (CAV-1 KO) mice develop cardiopulmonary disease with manifestations resembling PH, including elevated right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary endothelial proliferative disease. Here, we hypothesize that engraftment of healthy BM to CAV-1 KO mice will prevent pulmonary vascular remodeling and development of the cardiopulmonary disease. CAV-1 KO mice and wild-type (WT) mice underwent transplantation with WT or CAV-1 KO BM. Hematopoietic differentiation was analyzed by flow cytometry. Pulmonary endothelial remodeling was quantified by CD31 image analysis. RVSP and RV cardiomyocyte area or Fulton's index were used to analyze RV hypertrophy. Maladaptive RV hypertrophy was determined by quantification of RV fibrosis. Transplantation of CAV-1 KO BM into healthy recipient WT mice led to elevation of RVSP, RV hypertrophy, and pulmonary endothelial remodeling. Reconstitution of CAV-1 KO with WT BM prevented spontaneous development of PH, including elevation of RVSP and maladaptive RV hypertrophy, but not pulmonary endothelial remodeling. Healthy BM has a protective role in the right ventricle independent of pulmonary vascular disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA